When neural networks meet error correcting codes: towards new architectures for associative memories

Vincent Gripon Joint work with Claude Berrou

Télécom Bretagne
April 7th, 2013

Plan

(1) Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes
(2) A new architecture of associative memory
- Storing
- Retrieving
- Performance
(3) Developments
- Blurred messages
- Correlated sources
- Learning sequences

4 Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

Plan

(1) Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes

A new architecture of associative memory

- Storing
- Retrieving
- Performance

Developments

- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

LDPC decoder

Neocortical "decoder"

Both systems aim at retrieving a previously stored piece of information given part of its content.

First hypothesis: the information scale

Macroscopic scale

Mesoscopic scale

Microscopic scale

Second hypothesis: redundancy

Illustration

$0229001277 \quad 1277$
 022900 1-77 $12-7$

Redundancy

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Second hypothesis: redundancy

Illustration

0229001277

022900 1-77

Redundancy

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
* Therefore redındant

Second hypothesis: redundancy

Illustration

0229001277

022900 1-77

Redundancy

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Second hypothesis: redundancy

Illustration

0229001277

022900 1-77

Redundancy

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Second hypothesis: redundancy

Illustration

$$
\begin{array}{ll}
0229001277 & 1277 \\
0229001-77 & 12-7
\end{array}
$$

Redundancy

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Third hypothesis: recurrent graph

The neocortex can be essentially regarded as a distributed recurrent graph.

illustration

In one sentence

The neocortex is a recurrent, distributed graph of neocortical columns (fanals) that is able to store redundant pieces of information.

Error correcting codes

Example: the thrifty code

Error correcting codes

Example: the thrifty code

Error correcting codes

Example: the thrifty code

Error correcting codes

Example: the thrifty code

Error correcting codes

Example: the thrifty code

- Code containing only binary words with a single "1":

Drawback: $d_{\text {min }}=2$

* But easy to decode and minimize the energy:
* These codes can be associated like the

Error correcting codes

Example: the thrifty code

- Code containing only binary words with a single "1":

- Drawback: $d_{\min }=2$:

Error correcting codes

Example: the thrifty code

- Code containing only binary words with a single "1":

- Drawback: $d_{\text {min }}=2$:

- But easy to decode and minimize the energy:

Error correcting codes

Example: the thrifty code

- Code containing only binary words with a single "1":

- Drawback: $d_{\text {min }}=2$:

- But easy to decode and minimize the energy:

- These codes can be associated like the distributed codes...

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that

 are all connected one to another.
Codes of cliques of size $c \ll n$

Codes made of cliques of constant size

Example: codewords $=4$ nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes $\Rightarrow d_{\text {min }}=6$ edges

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes
$\Rightarrow d_{\text {min }}=6$ edges

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$,

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

$$
\begin{aligned}
& \text { Symbols }=\text { edges } \\
& 2 \text { distinct nodes } \\
& \Rightarrow d_{\min }=6 \text { edges }
\end{aligned}
$$

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$, rate $r \approx \frac{c}{2}$
$\Rightarrow F=r d_{\min } \approx 2$,

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes
$\Rightarrow d_{\text {min }}=6$ edges

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$, rate $r \approx \frac{c}{2}\binom{c}{2}^{-1}$

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes
$\Rightarrow d_{\text {min }}=6$ edges

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$, rate $r \approx \frac{c}{2}\binom{c}{2}^{-1}$
- $\Rightarrow F=r d_{\min } \approx 2$,

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes
$\Rightarrow d_{\text {min }}=6$ edges

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$, rate $r \approx \frac{c}{2}\binom{c}{2}^{-1}$
- $\Rightarrow F=r d_{\text {min }} \approx 2$,
- Cliques are codewords of a very interesting error correcting code. . .

Codes made of cliques of constant size

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols $=$ edges
2 distinct nodes
$\Rightarrow d_{\text {min }}=6$ edges

Codes of cliques of size $c \ll n$

- $d_{\text {min }}=2(c-1) \approx 2 c$, rate $r \approx \frac{c}{2}\binom{c}{2}^{-1}$
- $\Rightarrow F=r d_{\text {min }} \approx 2$,
- Cliques are codewords of a very interesting error correcting code. . . and they are free!

Plan

Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes
(2) A new architecture of associative memory
- Storing
- Retrieving
- Performance

Developments

- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11

Retrieve it from -11-111-1?

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11
- Retrieve it from -11-111-1?1

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11
- Retrieve it from -11-111-1?1

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message-11-111-1-11
- Retrieve it from-11-111-1-11

Performance and bounds

Hopfield networks (n neurons \longleftrightarrow)

- Diversity: $M=\frac{n}{2 \log (n)}, \leftrightarrow$
- Capacity : $\frac{n^{2}}{2 \log (n)}, \quad=$
- Efficiency $\approx \frac{1}{\log (n) \log _{2}(M+1)} \cdot[:$

Example with $n=790$

Performance and bounds

Hopfield networks (n neurons \longleftrightarrow)

- Diversity: $M=\frac{n}{2 \log (n)}$, \leftrightarrow
- Capacity : $\frac{n^{2}}{2 \log (n)}, \quad=\square$
- Efficiency $\approx \frac{1}{\log (n) \log _{2}(M+1)}$.

Example with $n=790$:

Performance and bounds

Hopfield networks (n neurons \longleftrightarrow)

- Diversity : $M=\frac{n}{2 \log (n)}, \leftrightarrow$
- Capacity : $\frac{n^{2}}{2 \log (n)}, \square=\square$
- Efficiency $\approx \frac{1}{\log (n) \log _{2}(M+1)}$. $[$

Example with $n=790$

Performance and bounds

Hopfield networks (n neurons \longleftrightarrow)

- Diversity : $M=\frac{n}{2 \log (n)}, \leftrightarrow$
- Capacity : $\frac{n^{2}}{2 \log (n)}, \quad=\square$
- Efficiency $\approx \frac{1}{\log (n) \log _{2}(M+1)}$. $[$

Our model: storing

- Example: $c=4$ clusters made of $l=16$ fanals each,

Our model: storing

- Example: $c=4$ clusters made of $l=16$ fanals each,
- 8

Our model: storing

- Example: $c=4$ clusters made of $l=16$ fanals each,
- $\underbrace{8} \underbrace{3} \underbrace{2}$,
j_{1} in $\mathrm{c}_{1} j_{2}$ in $\mathrm{c}_{2} j_{3}$ in $\mathrm{c}_{3} j_{4}$ in c_{4}

Our model: storing

- Example: $c=4$ clusters made of $l=16$ fanals each,
- 8 - $\underbrace{3}$. j_{1} in $\mathrm{c}_{1} \quad j_{2}$ in $\mathrm{c}_{2} \quad j_{3}$ in $\mathrm{c}_{3} \quad j_{4}$ in c_{4}

Our model: storing

- Example: $c=4$ clusters made of $l=16$ fanals each,
- 8 - $\underbrace{3}$. j_{1} in $\mathrm{c}_{1} j_{2}$ in $\mathrm{c}_{2} j_{3}$ in $\mathrm{c}_{3} j_{4}$ in c_{4}

Our model: retrieving

$$
\underbrace{8} \underbrace{3}_{n_{1}} \underbrace{2}_{j_{3} \text { in }_{3}} ?
$$

- Local connection,
* Global decoding: sum,
- Local decoding: winner-take-all,
* Possihly iterate the two decodings.

Our model: retrieving

$$
\underbrace{8}_{j_{1} \text { in } c_{1}} \underbrace{3}_{j_{2} \text { in } c_{2}} \underbrace{2}_{j_{3} \text { in } c_{3}} \text { ?, }
$$

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Our model: retrieving

$$
\underbrace{8}_{j_{1} \text { in } \mathrm{c}_{1}} \underbrace{3}_{j_{2} \text { in } \mathrm{c}_{2}} \underbrace{2}_{j_{3} \text { in } \mathrm{c}_{3}} \text { ?, }
$$

- Local connection, Global decoding: sum, Local decoding: winner-take-all, Possibly iterate the two decodings.

Our model: retrieving

$$
\underbrace{8}_{j_{1} \text { in } c_{1}} \underbrace{3}_{j_{2} \text { in } c_{2}} \underbrace{2}_{j_{3} \text { in } c_{3}} \text { ?, }
$$

- Local connection,
- Global decoding: sum, Local decoding: winner-take-all, Possibly iterate the two decodings.

Our model: retrieving

$$
\underbrace{8}_{j_{1} \text { in } \mathrm{c}_{1}} \underbrace{3}_{j_{2} \text { in } \mathrm{c}_{2}} \underbrace{2}_{j_{3} \text { in } \mathrm{c}_{3}} \underbrace{9}_{j_{4} \text { in } \mathrm{c}_{4}}
$$

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all, Possibly iterate the two decodings.

Our model: retrieving

$$
\underbrace{8}_{j_{1} \text { in } \mathrm{c}_{1}} \underbrace{3}_{j_{2} \text { in } \mathrm{c}_{2}} \underbrace{2}_{j_{3} \text { in } \mathrm{c}_{3}} \underbrace{9}_{j_{4} \text { in } \mathrm{c}_{4}}
$$

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $\boldsymbol{d} \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

$d=1:$ no more distinction between stored and not stored messages,

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $\boldsymbol{d} \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

Curves

$d=1$: no more distinction betwee stored and not stored messages,

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $\boldsymbol{d} \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

Curves

Remarks

- $d=1$: no more distinction between stored and not stored messages,
$d=f(l, M)$, not
depending on C,

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $\boldsymbol{d} \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

Curves

Remarks

- $d=1$: no more distinction between stored and not stored messages,
- $d=f(l, M)$, not depending on c,

Density

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $\boldsymbol{d} \approx 1-\left(1-\frac{1}{l^{2}}\right)^{M}$.

Curves

Remarks

- $d=1$: no more distinction between stored and not stored messages,
- $d=f(l, M)$, not depending on c,
- $d \approx \frac{M}{l^{2}}$, for $M \ll l^{2}$.

Performance

As an associative memory

Hopfield network ($n=790$)

Performance

Set implementation

Hopfield network ($n=740$)

Second kind error rate for various sizes of clusters c and for $l=512$ fanals per cluster.

Plan

Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes

A new architecture of associative memory

- Storing
- Retrieving
- Performance
(3) Developments
- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

Blurred messages

Limitation

Partial messages must contain perfect information.

Blurred messages

Limitation

Partial messages must contain perfect information.
Noise model

Blurred messages

Limitation

Partial messages must contain perfect information.
Noise model

Blurred messages

Limitation

Partial messages must contain perfect information.
Noise model

Soft decoding

Blurred messages

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Blurred messages

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Performance

Simulations

Comparison of performance when messages are partially erased and when they are blurred ($b=5$).

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy
brain

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

$$
\begin{aligned}
& \text { brain } \\
& \text { grade }
\end{aligned}
$$

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy
brain
grade
gamin

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

$$
\begin{aligned}
& \text { brain } \\
& \text { grade } \\
& \text { gamin } \\
& \text { grain }
\end{aligned}
$$

Correlated messages

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

$$
\begin{aligned}
& \text { brain }+c 1 \\
& \text { grade }+c 2 \\
& \text { gamin }+c 3 \\
& \text { grain }+c ?
\end{aligned}
$$

Global winner-take-all

Idea

- After global message passing. .
- After local maximum selections. . .
- Global maximum selection.

Global winner-take-all

Illustration

Idea

- After global message passing...
- After local maximum selections... Global maximum selection.

Global winner-take-all

Illustration

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Global winner-take-all

Illustration

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Global winner-take-all

Illustration

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Interests

- Diversity $\propto c^{2}$,
- Stored messages length may vary.

Global winner-take-all

Illustration

Idea

- After global message passing...
- After local maximum selections. . .
- Global maximum selection.

Interests

- Diversity $\propto c^{2}$,
- Stored messages length may vary.

Tournament chains and unidirectional connections

Problem

Bidirectional connections and full inter-connectivity.

Tournament chains and unidirectional connections

Problem

Bidirectional connections and full inter-connectivity.

Tournament chains and unidirectional connections

Problem

Bidirectional connections and full inter-connectivity.

Learning arbitrarily long sequences

Performance

Learning arbitrarily long sequences

Performance

- c = 50 clusters,

Learning arbitrarily long sequences

Performance

- $c=50$ clusters,
- $l=256$
fanals/cluster,
- $L=1000$ symbols
in messages,
* $m=1823$ learned
messages,
- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

- c = 50 clusters,
- $l=256$
fanals/cluster,
- $L=1000$ symbols
in messages,
m-1823 learned
messages,
- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

- c = 50 clusters,
- $l=256$
fanals/cluster,
- $L=1000$ symbols
in messages,
* $m=18 \geqslant 3$ learned
messages,
- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

- $c=50$ clusters,
- $l=256$
fanals/cluster, $L=1000$ symbols
in messages,
- $m=1823$ learned
messages, - $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

- $c=50$ clusters,
- $l=256$
fanals/cluster, $L=1000$ symbols
in messages,
$m=1823$ learned
messages,
- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

Learning arbitrarily long sequences

Performance

$c=50$ clusters,
e $l=256$
fanals/cluster,
$L=1000$ symbols
in messages,

- $m=1873$ learned
messages,
- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

$c=50$ clusters,
e $l=256$
fanals/cluster,
e $L=1000$ symbols
in messages,
$m=1873$ learned
messages,

- $P_{e} \leq 0.01$.

Learning arbitrarily long sequences

Performance

e $c=50$ clusters,
e $l=256$
fanals/cluster,
e $L=1000$ symbols
in messages,
e $m=1823$ learned
messages,
e $P_{e} \leq 0.01$.
\square

Learning arbitrarily long sequences

Performance
c = 50 clusters,
$l=256$
fanals/cluster,
$L=1000$ symbols
in messages,
$m=1873$ learned
messages,

Learning arbitrarily long sequences

Performance
c = 50 clusters,
$l=256$
fanals/cluster,
$L=1000$ symbols
in messages,
$m=1873$ learned
messages,

Learning arbitrarily long sequences

Performance

Learning arbitrarily long sequences

Performance
c = 50 clusters
$l=256$
fanals/cluster,
in messages,

Learning arbitrarily long sequences

Performance

in messages,
m-1823 !earned
messages,

Learning arbitrarily long sequences

Performance

- $c=50$ clusters,
- $l=256$
fanals/cluster,
- $L=1000$ symbols in messages,
- $m=1823$ learned messages,

Learning arbitrarily long sequences

Performance

- $c=50$ clusters,
- $l=256$
fanals/cluster,
- $L=1000$ symbols in messages,
- $m=1823$ learned messages,
- $P_{e} \leq 0.01$.

Plan

Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes

A new architecture of associative memory

- Storing
- Retrieving
- Performance

Developments

- Blurred messages
- Correlated sources
- Learning sequences

4 Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

Storing hierarchical messages

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

Provide networks with a third dimension,

Possibility to store hierarchical messages with unchanged efficiency.

Storing hierarchical messages

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

Idea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.

Storing hierarchical messages

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

Idea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.

Storing hierarchical messages

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

Idea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.

Storing hierarchical messages

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

Idea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Spatial
Fourrier
transform
Edge
detection
Small
resolution
Gradient
principal
component

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Combining associative memories and classifiers

Idea

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Perception Memory

Towards new computation models based on information

Idea

- Finite input/output problem \equiv finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

Perspectives
Extend to nonfinite input/output problems,

Towards new computation models based on information

Idea

- Finite input/output problem \equiv finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

Towards new computation models based on information

Idea

- Finite input/output problem \equiv finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

Perspectives

- Extend to nonfinite input/output problems, Organize multiple associative memories jointly, Construct meta associative memories to build up solutions to more complex problems.

Towards new computation models based on information

Idea

- Finite input/output problem \equiv finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

Perspectives

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,

Construct meta associative memories to build up solutions to more complex problems.

Towards new computation models based on information

Idea

- Finite input/output problem \equiv finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

Perspectives

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

Questions

I am at your disposal if you have any question.

A bit of reading

CLAUDE BERROU VINCENT GRIPON

PETITE MATHÉMATIQUE DU CERVEAU
UNE THÉORIE DE L'INFORMATION MENTALE

To learn more

Visit:
http://www.vincent-gripon.com/?p1=100

Acknowledgements

Collaborators:

- C. Berrou,
- A. Abudib, X. Jiang,
- G. Coppin, D. Pastor, E. Sedgh Gooya.

