When neural networks meet error correcting codes: towards new architectures for associative memories

Vincent Gripon Joint work with Claude Berrou

Télécom Bretagne

April 7th, 2013

Vincent Gripon

Resilient associative memories

April 7th, 2013 1 / 30

Plan

Biology and error correction codes

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes
- 2 A new architecture of associative memory
 - Storing
 - Retrieving
 - Performance

3 Developments

- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

Plan

- Starting point
- From the neocortex to recurrent graphs : our three hypotheses
- A few words about error correcting codes
- 2 A new architecture of associative memory
 - Storing
 - Retrieving
 - Performance

3 Developments

- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

LDPC decoder

Neocortical "decoder"

Both systems aim at retrieving a previously stored piece of information given part of its content.

First hypothesis: the information scale

Macroscopic scale

Mesoscopic scale

Microscopic scale

Vincent Gripon

Resilient associative memories

April 7th, 2013 5 / 30

Illustration

02 29 00 12 77 12 77

02 29 00 1- 77 12 -7

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Illustration

02 29 00 12 77 12 77

02 29 00 1- 77 12 -7

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Illustration

02 29 00 12 77 12 77

02 29 00 1- 77 12 -7

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Illustration

02 29 00 12 77 12 77

02 29 00 1- 77 12 -7

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

Illustration

02 29 00 12 77 12 77

02 29 00 1- 77 **12 -7**

- We lose approximately one neuron per second,
- But we remember our phone number,
- Mental information is robust,
- Therefore redundant.

The neocortex can be essentially regarded as a distributed recurrent graph.

The neocortex is a recurrent, distributed graph of neocortical columns (fanals) that is able to store redundant pieces of information.

Vincent Gripon

Resilient associative memories

April 7th, 2013 9 / 30

Example: the thrifty code

 Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$: ______ - ______

But easy to decode and minimize the energy:

winner-take-all

• These codes can be associated like the distributed codes...

Vincent Gripon

Resilient associative memories

April 7th, 2013 9 / 30

Example: the thrifty code

 Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$:

But easy to decode and minimize the energy:

winner-take-all

• These codes can be associated like the distributed codes...

Vincent Gripon

Resilient associative memories

April 7th, 2013 9 / 30

Example: the thrifty code

 Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$:

But easy to decode and minimize the energy:

winner-take-all

These codes can be associated like the distributed codes...

Resilient associative memories

Example: the thrifty code

 Code containing only binary words with a single "1":

• Drawback: $d_{\min} = 2$:

• But easy to decode and minimize the energy:

winner-take-all

 These codes can be associated like the distributed codes...

Vincent Gripon

Resilient associative memories

April 7th, 2013 9 / 30

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

2 distinct nodes ⇒ d_{min} = 6 edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(\epsilon - 1) \approx 2\epsilon$.

 \Rightarrow r = $rd_{\min} \approx 2$,

Cliques are codewords of a very interesting error correcting code.

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes ⇒ $d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(c-1) \approx 2c,$ $\Rightarrow F = rd_{\min} \approx 2,$

 Cliques are codewords of a very interesting error correcting code...

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

 $d_{\min} = 2(c-1) \approx 2c,$ $\Rightarrow F = rd_{\min} \approx 2,$

Cliques are codewords of a very interesting error correcting code....

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

- $d_{\min}=2(c-1)pprox 2c$, rate $rpprox rac{2}{2}$
- \Rightarrow $F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

- $d_{\min}=2(c-1)pprox 2c$, rate $rpprox rac{c}{2}{c\choose 2}^-$
- \Rightarrow $F = rd_{min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow F = rd_{min} \approx 2,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- $\Rightarrow F = rd_{\min} \approx 2$,
- Cliques are codewords of a very interesting error correcting code...and they are free!

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow F = rd_{min} \approx 2,
- Cliques are codewords of a very interesting error correcting code...and they are free!

April 7th, 2013 10 / 30

Example: codewords = 4 nodes cliques

Clique

Set of nodes that are all connected one to another.

Symbols = edges

2 distinct nodes $\Rightarrow d_{\min} = 6$ edges

Codes of cliques of size $c \ll n$

- $d_{\min} = 2(c-1) \approx 2c$, rate $r \approx \frac{c}{2} {c \choose 2}^{-1}$
- \Rightarrow F = rd_{min} \approx 2,

 Cliques are codewords of a very interesting error correcting code...and they are free!

Vincent Gripon

April 7th, 2013 10 / 30

Plan

- Biology and error correction codes
 - Starting point
 - From the neocortex to recurrent graphs : our three hypotheses
 - A few words about error correcting codes

2 A new architecture of associative memory

- Storing
- Retrieving
- Performance

3 Developments

- Blurred messages
- Correlated sources
- Learning sequences

Current and future work

- Storing hierarchical messages
- Combining associative memories and classifiers
- Towards new computation models based on information

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11 4
- Retrieve it from -11-111-1?1

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11 4
- Retrieve it from -11-111-1?1

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11 4
- Retrieve it from -11-111-1?1

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

Store binary message -11-111-1-11

Retrieve it from -11-111-1?1

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

Store binary message -11-111-1-11

Retrieve it from -11-111-1?1

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

Store binary message -11-111-1-11

Retrieve it from -11-111-1?1

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11
- Retrieve it from -11-111-1?1

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11
- Retrieve it from -11-111-1?1

Associative memories and the Hopfield network

What is an associative memory?

Two operations:

- Store a message,
- Retrieve a previously stored message from part of its content.

Our reference: the Hopfield network

Example:

- Store binary message -11-111-1-11
- Retrieve it from -11-111-1-11

Hopfield networks (*n* neurons _____)

• Diversity :
$$M = \frac{n}{2log(n)}$$
, \leftrightarrow

• Capacity :
$$\frac{n^2}{2log(n)}$$
, =

• Efficiency
$$\approx \frac{1}{\log(n)\log_2(M+1)}$$
.

Example with
$$n = 790$$
 :

Hopfield networks (*n* neurons _____)

• Diversity :
$$M = \frac{n}{2log(n)}$$
, \leftrightarrow

• Capacity :
$$\frac{n^2}{2log(n)}$$
, =

• Efficiency $\approx \frac{1}{\log(n)\log_2(M+1)}$.

Example with
$$n = 790$$
 :

Hopfield networks (*n* neurons _____)

• Diversity :
$$M = \frac{n}{2log(n)}$$
, \leftrightarrow

• Capacity :
$$\frac{n^2}{2\log(n)}$$
, =

• Efficiency
$$\approx \frac{1}{\log(n)\log_2(M+1)}$$
.

Example with
$$n = 790$$
 :

Hopfield networks (*n* neurons _____)

• Diversity :
$$M = \frac{n}{2log(n)}$$
, \leftrightarrow

• Capacity :
$$\frac{n^2}{2log(n)}$$
, =

• Efficiency
$$\approx \frac{1}{\log(n)\log_2(M+1)}$$
.

Example with
$$n = 790$$
:

Example: c = 4 clusters made of l = 16 fanals each,

Vincent Gripon

• Example: c = 4 clusters made of l = 16 fanals each,

Vincent Gripon

Resilient associative memories

Example: c = 4 clusters made of l = 16 fanals each,

Example: c = 4 clusters made of l = 16 fanals each,

Vincent Gripon

Resilient associative memories

Example: c = 4 clusters made of l = 16 fanals each,

<u>2</u>, 8 <u>ع</u>

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Vincent Gripon

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

3_2?, 8 j_1 in c_1 j_2 in c_2 j_3 in c_3

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Vincent Gripon

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Vincent Gripon

- Local connection,
- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Vincent Gripon

Local connection,

- Global decoding: sum,
- Local decoding: winner-take-all,
- Possibly iterate the two decodings.

Vincent Gripon

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $dpprox 1-\left(1-rac{1}{l^2}
 ight)^M.$

Curves

Remarks

- d = 1: no more
 distinction between
 stored and not stored
 messages,
- d = f(l, M), not
 - depending on *c*,
- $d pprox rac{M}{T^2}$, for $M \ll l^2$.

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Curves

Remarks

- d = 1: no more
 distinction between
 stored and not stored
 messages,
- d = f(l, M), not
 - depending on *c*,
- $d \approx rac{M}{T^2}$, for $M \ll l^2$.

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between stored and not stored messages,
 d = f(l, M), not depending on c,
- $d pprox rac{M}{l^2}$, for $M \ll l^2$.

Vincent Gripon

Resilient associative memories

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between stored and not stored messages,
- d = f(l, M), not depending on c,
- $d \approx \frac{M}{l^2}$, for $M \ll l^2$.

Vincent Gripon

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between stored and not stored messages,
- d = f(l, M), not depending on c,

Vincent Gripon

Resilient associative memories

A binary model of long term memory

- Density d is the ratio of the number of used connections to the total number of possible ones,
- If messages are i.i.d.: $d \approx 1 \left(1 \frac{1}{l^2}\right)^M$.

Remarks

- d = 1: no more distinction between stored and not stored messages,
- d = f(l, M), not depending on c,

•
$$d \approx \frac{M}{l^2}$$
, for $M \ll l^2$.

Vincent Gripon

Performance

As an associative memory

c = 8 clusters of l = 256
fanals each (~ messages of 64 bits),
Error probability when
retrieving messages half
erased.

Hopfield network (n = 790)

Our network

Performance

Set implementation

Second kind error rate for various sizes of clusters c and for l = 512 fanals per cluster.

Hopfield network (n = 740)

Vincent Gripon

Plan

- 1 Biology and error correction codes
 - Starting point
 - From the neocortex to recurrent graphs : our three hypotheses
 - A few words about error correcting codes
- A new architecture of associative memory
 - Storing
 - Retrieving
 - Performance

3 Developments

- Blurred messages
- Correlated sources
- Learning sequences
- Current and future work
 - Storing hierarchical messages
 - Combining associative memories and classifiers
 - Towards new computation models based on information

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Resilient associative memories

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Resilient associative memories

Limitation

Partial messages must contain perfect information.

Noise model

Soft decoding

Vincent Gripon

Resilient associative memories

Performance

Simulations

Comparison of performance when messages are partially erased and when they are blurred (b = 5).

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

Limitation

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

brain

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

brain grade

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

brain grade gamin

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

brain grade gamin grain

With correlations grows the number of Type II errors.

Fighting correlation by adding random redundancy

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

- \sim Diversity $\propto c$
- Stored messages length
 - may vary.

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

- Diversity $\propto c$
- Stored messages length

may vary.

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

- Diversity $\propto a$
- Stored messages length

may vary.

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

Diversity $\propto c^2$, Stored messages length may vary.

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

- Diversity $\propto c^2$,
- Stored messages length may vary.

ldea

- After global message passing...
- After local maximum selections...
- Global maximum selection.

Interests

- Diversity $\propto c^2$,
- Stored messages length may vary.

Tournament chains and unidirectional connections

Problem

Bidirectional connections and full inter-connectivity.

Problem

Bidirectional connections and full inter-connectivity.

Problem

Bidirectional connections and full inter-connectivity.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \leq 0.01.$

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

- c = 50 clusters,
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- $P_e \le 0.01$.

Performance

- c = 50 clusters,
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,

• $P_e \le 0.01$.

- c = 50 clusters,
- *l* = 256
 fanals/cluster,
- L = 1000 symbols in messages,
- *m* = 1823 learned messages,
- *P_e* ≤ 0.01.

Plan

- 1 Biology and error correction codes
 - Starting point
 - From the neocortex to recurrent graphs : our three hypotheses
 - A few words about error correcting codes
- A new architecture of associative memory
 - Storing
 - Retrieving
 - Performance
- 3 Developments
 - Blurred messages
 - Correlated sources
 - Learning sequences
- Current and future work
 - Storing hierarchical messages
 - Combining associative memories and classifiers
 - Towards new computation models based on information

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

ldea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

ldea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

ldea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

ldea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Question

How to store pieces of hierarchical information (e.g. sentences of words of letters) into associative memories?

ldea

- Provide networks with a third dimension,
- Connect layers using subsampling,
- Use time in decoding.

Possibility to store hierarchical messages with unchanged efficiency.

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Vincent Gripon	Resilient associative memories		April 7	7th, 2013 28 / 30

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Vincent Gripon		Resilient associative memories	s April 7th, 2013 28 /		

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

Vincent Gripon Resilient associative men			April 7th, 2013 28 /		
				< <u>■</u> → <u>■</u> → へ()	
nage					

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

- Combine the discriminative abilities of associative memories with that, associative, of classifiers,
- Use classifiers to project input space into one where Hamming distance is meaningful.

ldea

- Store them into an associative memory to obtain a solution.

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

ldea

- Store them into an associative memory to obtain a solution.

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

ldea

- Finite input/output problem
 finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

ldea

- Finite input/output problem
 finite set of couples (input, output),
- Store them into an associative memory to obtain a solution.

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

Idea

- Store them into an associative memory to obtain a solution.

- Extend to nonfinite input/output problems,
- Organize multiple associative memories jointly,
- Construct meta associative memories to build up solutions to more complex problems.

Questions

I am at your disposal if you have any question.

A bit of reading

CLAUDE BERROU VINCENT GRIPON

PETITE MATHÉMATIQUE DU CERVEAU

UNE THÉORIE DE L'INFORMATION MENTALE

To learn more

Visit: http://www.vincent-gripon.com/?p1=100

Acknowledgements

Collaborators:

- C. Berrou,
- A. Abudib, X. Jiang,
- G. Coppin, D. Pastor, E. Sedgh Gooya.